MATH 502 HOMEWORK 4

Due Friday, November 15.
Problem 1. Suppose that $f: \mathbb{N} \rightarrow \mathbb{N}$ is total recursive. Prove that $A=$ $\bigcup_{n} W_{f(n)}$ is r.e.

Problem 2. (a) (Reduction) Suppose that A, B are r.e. sets. Prove that there are disjoint r.e. sets A_{0}, B_{0}, such that $A_{0} \subset A, B_{0} \subset B$, and $A_{0} \cup B_{0}=$ $A \cup B$
(b) (Separation) Suppose A and B are disjoint Π_{1}^{0} sets. Prove that there is a recursive C, such that $A \subset C$ and $C \cap B=\emptyset$.
Problem 3. Prove that the following sets are Σ_{3}^{0} :
(1) Cofin $:=\left\{e \mid \mathbb{N} \backslash W_{e}\right.$ is finite $\}$.
(2) $\left\{(a, b) \mid W_{a} \subset^{*} W_{b}\right\}$, where $A \subset^{*} B$ means that $A \backslash B$ is finite.
(3) $\{(a, b) \mid$ there is a recursive C s.t $A \subset C \wedge B C=\emptyset\}$.

Problem 4. Prove that $\left\{e \mid W_{e} \neq \emptyset\right\}$ is Σ_{1}^{0} complete.
Problem 5. Classify the following in the arithmetic hierarchy:
(1) $\left\{e \mid W_{e} \subset\{0,1\}\right\}$.
(2) $\left\{e \mid W_{e} \neq \emptyset \wedge W_{e}\right.$ is finite $\}$.

