MATH 502 HOMEWORK 4

Due Friday, November 15.

Problem 1. Suppose that $f : \mathbb{N} \to \mathbb{N}$ is total recursive. Prove that $A = \bigcup_n W_{f(n)}$ is r.e.

Problem 2. (a) (Reduction) Suppose that A, B are r.e. sets. Prove that there are disjoint r.e. sets A_0, B_0 , such that $A_0 \subset A, B_0 \subset B$, and $A_0 \cup B_0 = A \cup B$

(b) (Separation) Suppose A and B are disjoint Π_1^0 sets. Prove that there is a recursive C, such that $A \subset C$ and $C \cap B = \emptyset$.

Problem 3. Prove that the following sets are Σ_3^0 :

(1) $Cofin := \{e \mid \mathbb{N} \setminus W_e \text{ is finite } \}.$

- (2) $\{(a,b) \mid W_a \subset^* W_b\}$, where $A \subset^* B$ means that $A \setminus B$ is finite.
- (3) $\{(a,b) \mid \text{ there is a recursive } C \text{ s.t } A \subset C \land B C = \emptyset\}.$

Problem 4. Prove that $\{e \mid W_e \neq \emptyset\}$ is Σ_1^0 complete.

Problem 5. Classify the following in the arithmetic hierarchy:

- (1) $\{e \mid W_e \subset \{0,1\}\}$.
- (2) $\{e \mid W_e \neq \emptyset \land W_e \text{ is finite }\}.$